Main Article Content


The study aims to determine the effect of the application of bio-stimulant to one-eyed and two-eyed sugarcane setts as planting materials in enhancing the rooting and biomass.  The study was conducted at UNO-R School of Agriculture, Philippines from November to December 2023. Phil 2006-2289 variety was used as planting materials. The study was laid out in a two-way factorial Completely Randomized Design with the kind of materials as the main plot and the four (4) levels of concentration of bio-stimulant solutions (BSS) plus the control as the sub-plots replicated 4 times. Cane setts preparation was done a day before the planting operations. Leaf sheaths were remove and only those setts with good and viable eye buds were selected for planting. Soaking was done for 24 hours. Bio-stimulants (BSS) were diluted in water and used as a soaking solution and succeeding application was done 15 days after planting. Statistical analysis revealed highly significant differences among treatments on the germination, biomass accumulation, weight and length of roots, number, weight, and height of tillers applied with 500ml of BSS. There was a high significant difference on the root length and biomass as influence by type of cane setts and the levels of concentration of BSS.  Two-eyed cane setts applied with 500ml of BSS got the heaviest root weight and biomass. The study recommends the use of 500ml of BSS and two-eyed cane setts in enhancing the rooting and biomass of sugarcane plants during the germination phase.

Article Details

How to Cite
Oñal, Jr., P. A., Baldonebro, J. J. G., Cortez, M. D., Andrade, F. E., Bermejo, N. J. C., Lovino, M. M., & Poblacion, A. M. V. (2024). Enhancing Rooting and Biomass of Sugarcane Setts with Bio-Stimulant at Germination Stage. International Journal of Multidisciplinary: Applied Business and Education Research, 5(6), 2173-2188.


Abou Chehade, L., Al Chami, Z., De Pascali, S. A., Cavoski, I., & Fanizzi, F. P. (2018) Bio-stimulants from food processing by-products: agronomic, quality and meta-bolic impacts on organic tomato (Sola-num lycopersicum L.). J. Sci. Food Agric. 98, 1426–1436. doi: 10.1002/jsfa.8610.
Adorada, J. L., Adorada, A. L., & Recuenco-Adorada, J. (2023) Phytostimulatory Po-tential of Turan Bio-stimulant on the Growth and Yield of Brassica rapa subsp. chinensis (Pechay). Asian Journal of Soil Science and Plant Nutrition, 9(4), 76–85.
Albrecht, U. (2019) Plant Bio-stimulants: Defi-nition and Overview of Categories and Ef-fects. EDIS, 2019(3).
Arif, Y.; Bajguz, A.; Hayat, S. (2022) Moringa oleifera extract as a natural plant bio-stimulant. J. Plant Growth Regul. 2022, 1–16.
Azevedo, R. A., & Souza, C. D. (2019) Enhanc-ing sugarcane biomass with bio-stimulants: A comprehensive review. Re-newable Energy, 138, 620-629.
Bhattacharya, S., Gröne, F., Przesdzink, F., Ziffer-Berger, J., Barazani, O., Mummen-hoff, K., & Kappert, N. (2022) ‘Root of all success’: Plasticity in root architecture of invasive wild radish for adaptive benefit. Frontiers in Plant Science, 13.
Biology Online. (2020) Gravitropism Definition and Examples - Biology Online Diction-ary. Retrieved from
Biology Online. (2021) Phototropism Defini-tion and Examples - Biology-Online Dic-tionary. Retrieved from
Calvo, P., Nelson, L., & Kloepper, J. W. (2019) Agricultural uses of plant bio-stimulants. Plant and Soil, 442(1-2), 41-53.
Campobenedetto, C., Mannino, G., Beekwilder, J., Contartese, V., Karlova, R., & Bertea, C. M. (2021) The application of a biostimu-lant based on tannins affects root archi-tecture and improves tolerance to salinity in tomato plants. Scientific Reports, 11(1).
Clemente, P. R. A., Bezerra, B. K. L., Da Silva, V. S. G., Santos, J. C. M. D., & Endres, L. (2017) Root growth and yield of sugar-cane as a function of increasing gypsum doses. Pesquisa Agropecuária Tropical, 47(1), 110–117.
Dasarathan, J., Rajendran, P., & Rajangam, J. (2019) Effect of organic source of ferti-lizers along with inorganic on growth, yield and quality of Chillies. . . Re-searchGate. Retrieved from
De Oliveira, L. F., Moraes, D. M., & Santos, R. H. S. (2019) Enhancing sugarcane germina-tion with bio-stimulants: A comprehen-sive review. Journal of Plant Physiology, 235, 12-21.
De Vasconcelos, A. C., & Chaves, L. H. G. (2020) Bio-stimulants and their role in improv-ing plant growth under Abiotic Stresses. In IntechOpen eBooks.
Dinis, L. T., Peixoto, F., & Matos, M. (2021) En-hancing sugarcane productivity through bio-stimulant application: A field study in a tropical climate. Agricultural and Food Science, 30(4), 315-328.
Drobek, M., Frąc, M., &Cybulska, J. (2019) Plant bio-stimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic Stress—A review. Agronomy, 9(6), 335.
Ertani, A., Nardi, S., Francioso, O., Pizzeghello, D., Tinti, A., & Schiavon, M. (2019) Me-tabolite-Targeted Analysis and Physiolog-ical Traits of Zea mays L. in Response to Application of Leonardite-Humate and Lignosulfonate-Based Products for Their Evaluation as Potential Bio-stimulants. Agronomy, 9(8), 445.
Fankhauser, & Christie. (2021) Encyclopedia of Biological Chemistry III. ScienceDirect.
Fernandez, A., & Agan, M. S. (2021) Bio-Forge promotes the growth and yield perfor-mance of pechay (Brassica rapa L. var. chinensis (L.) Hanelt). Annales Universi-tatis Paedagogicae Cracoviensis, 95–108.
Gallego, G. R. (2023) The potential of Kap-paphycus alvarezii (seaweed) extracts as bio-stimulant on the growth of mangrove propagules (Rhizophora mangle L.) through foliar application. International Journal of Fisheries and Aquatic Studies, 11(2), 50–57.
Gonçalves, A. (2024) Modeling Biomass. Uni-versidade de Évora. Forest Bioenergy (pp.121-146). 10.1007/978-3-031-48224-3_5.
GreenFacts. (2022) Water and wastewater terms beginning P. parts per million (ppm).,to%20measure%20concentrations%20of%20gases.
Hazra, D. K., & Purkait, A. (2020) Role of bio-stimulant formulations in crop produc-tion: An overview. ResearchGate. Re-trieved from
Hazra, D. K., & Purkait, A. (2020) Role of bio-stimulant formulations in crop produc-tion: An overview. Research Gate. Re-trieved from
Khonghintaisong, J., Songsri, P., Toomsan, B., & Jongrungklang, N. (2017) Rooting and physiological trait responses to early drought stress of sugarcane cultivars. Sugar Tech, 20(4), 396–406.
Kisvarga, S., Hamar-Farkas, D., Boronkay, G., Neményi, A., & Orlóci, L. (2022) Effects of Bio-stimulants in Horticulture, with Em-phasis on Ornamental Plant Production. Agronomy, 12(5), 1043.
Kosmidis, Stavros and Stavropoulos, Pantelei-mon, K., Ioanna & Papastylianou, Pa-nayiota & Roussis, Ioannis and Mavroei-dis, Antonios and Beslemes, Dimitrios and Bilalis, D., (2023) Combined Effect of Bio-compost and Bio-stimulant on Root Char-acteristics of Cannabis sativa L. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horti-culture. 80. 47-53. 10.15835/buasvmcn-hort:2022.0038.
Libretexts. (2023) 2.25: Synthesis of Biological Macromolecules - hydrolysis. Retrieved from
Madhav, T., Bindu, G. S. M., Kumar, M., & Naik, C. M. (2017) Study on Root Characteris-tics of Sugarcane (Saccharum officinar-um) Genotypes for Moisture Stress. Inter-national Journal of Plant and Soil Science, 18(5), 1–4.
Matthews, S., Ali, A., Siddiqui, Y., & Suprama-niam, C. V. (2022) Plant bio-stimulant: prospective, safe, and natural resources. Journal of Soil Science and Plant Nutri-tion, 22(2), 2570–2586.
Meyer, J., Rein, P., Turner, P., & Mathias, K. (2011) Good management practices manual for the cane sugar industry (fi-nal). International Finance Corporation. Johannesburg, South Africa. pp 37-38.
Mutale-joan, C.; Redouane, B.; Najib, E.; Yassine, K.; Lyamlouli, K.; Laila, S.; Ze-roual, Y. & El Arroussi, H. (2020) Screen-ing of microalgae liquid extracts for their biostimulant properties on plant growth, nutrient uptake, and metabolite profile of Solanum lycopersicum L. Sci. Rep. 2020, 10, 2820.
Ochoa-Hueso, R., & Vargas, R. (2019) Bio-stimulant application in sugarcane culti-vation: Effects on root architecture and nutrient uptake. Agricultural and Envi-ronmental Chemistry, 41(6), 1078-1085.
Olszewska, M. (2022) Effects of Cultivar, Ni-trogen Rate and Biostimulant Application on the Chemical Composition of Perenni-al Ryegrass (Lolium perenne L.) Biomass. Agronomy. 12. 826. 10.3390/agronomy12040826.
Oñal, Jr., P. A., Baldonebro, J.J.G., Cortez, M.D., & Andrade, F.E. (2024) Inducing the Growth and Yield of Mungbeans Applied with Different Levels of Concentrations of Bio-Stimulants. International Journal of Multidisciplinary: Applied Business and Education Research. 5(2), 555-562. doi: 10.11594/ijamaber.05.0216
Oñal, Jr., P. A., Dabo, A. D. S., Cataluña, D. D., & Salonoy, A. M. A. (2023) Effectiveness of bio-stimulant solutions in inducing the germination of ginger rhizomes. Interna-tional Conference on Agriculture Scienc-es, Environment, Urban and Rural Devel-opment., 64–76. Retrieved from
Oñal, Jr., P. A., & Jinon, R. J. (2022) Productivi-ty of sugarcane applied with different quantities of NPK at Central Philippines. European Journal of Agricultural and Ru-ral Education, 3(4), 1-4. Retrieved from
Petropoulos, Spyridon. (2020) Practical Appli-cations of Plant Bio-stimulants in Green-house Vegetable Crop Production. Agronomy. 10. 1569. 10.3390/agronomy10101569
Pierre, J., Perroux, J. M., & Rae, A. (2019) Screening for sugarcane root phenes re-veals that reducing tillering does not lead to an increased root mass fraction. Fron-tiers in Plant Science, 10.
Roberts, M., Long, S. P., Tieszen, L. L., & Bea-dle, C. L. (1985) Measurement of plant biomass and net primary production. In Elsevier eBooks (pp. 1–19).
Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., & Tava, A. (2019) Microal-gal bio-stimulants and biofertilisers in crop productions. Agronomy, 9(4), 192.
Santini, G., Biondi, N., Rodolfi, L., & Tredici, M. R. (2021) Plant Bio-stimulants from Cya-nobacteria: An Emerging Strategy to Im-prove Yields and Sustainability in Agricul-ture. Plants, 10(4), 643.
Santos, G. L. D., Nicchio, B., Borges, M. A., De Andrade Carvalho Gualberto, C., Pereira, H. S., & Korndörfer, G. H. (2020) Effect of bio-stimulants on tilling, yield and quality component of sugarcane. Brazilian Jour-nal of Development, 6(5), 29907–29918.
Shahrajabian, M. H., Chaski, C., Polyzos, N., & Petropoulos, S. Α. (2021) Biostimulants Application: A low input cropping man-agement tool for sustainable farming of vegetables. Biomolecules, 11(5), 698.
Silva, Deise & Jacomassi, Lucas & Oliveira, Jo-siane & Oliveira, Marcela & Momesso, Le-tusa & Siqueira, Gabriela & Foltran, Ro-drigo & Soratto, Rogério & Dinardo-Miranda, Leila & Crusciol, Carlos. (2022) Growth-Promoting Effects of Thiameth-oxam on Sugarcane Ripened With Sul-fometuron-Methyl. Sugar Tech. 25. 10.1007/s12355-022-01190-8.
Silva, L. C., Campos, M. L., Brito, M. S., & San-tos, P. R. (2019) Exploring the role of bio-stimulants in improving sugarcane root resilience under water stress conditions. Plant Physiology and Biochemistry, 141, 286-294.
Smith, A. B., & Jones, C. D. (2021) Advances in the study of root architecture: Expanding our understanding of plant-soil interac-tions. Annual Review of Plant Biology, 72(1), 423-448. doi:10.1146/annurev-arplant-080620-103830.
Smith, D., Inman-Bamber, N. G., & Thorburn, P. J. (2005) Growth and function of the sug-arcane root system. Field Crops Research, 92(2–3), 169–183.
Smith, J. A., & Johnson, M. T. (2020) Sugarcane (Saccharum officinarum L.): A compre-hensive analysis of its historical, econom-ic, and industrial significance. Crop Sci-ence, 60(3), 1102-1112. doi:10.2135/cropsci2020.01.0032.
Souza, R. P., & Machado, E. C. (2019) Bio-stimulants as key players in sugarcane root development: Unraveling the hor-monal regulation. Plant and Soil, 435(1-2), 175-187.
Szparaga, A., Kuboń, M., Kocira, S., Czer-wińska, E., Pawłowska, A., Hara, P., & Kwaśniewski, D. (2019) Towards Sus-tainable Agriculture—Agronomic and Economic effects of biostimulant use in common bean cultivation. Sustainability, 11(17), 4575.
Toscano, S., Romano, D., & Patanè, C. (2023) Effect of application of biostimulants on the biomass, nitrate, pigments, and anti-oxidants content in radish and Turnip mi-crogreens. Agronomy, 13(1), 145.
Ugena, L., Hylova, A., Podlesakova, K., Hump-lik, J. F., Dolezal, K., Diego, N. D., & Spich-al, L. (2018) Characterization of biostimu-lant mode of action using novel multi-trait high-throughput screening of Ara-bidopsis germination and rosette growth. Frontiers in Plant Science, 9, 1327.

Verlag Dr. Albert & Bartens KG. (2022) Good management practices for the cane sugar industry. Sugar Industry International.
Vojnovi´c, Ð.; Maksimovi´c, I.; Tepi´c Horecki, A.; Žuni´c, D.; Adamovi´c, B.; Mili´c, A.; Šumi´c, Z.; Sabadoš, V.; Ilin, Ž. (2023) Bi-ostimulants Affect Differently Biomass and Antioxidant Status of Onion (Allium cepa) Depending on Production Method. Horticulturae 2023, 9, 1345.
Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017) Bio-stimulants in plant science: A global perspective. Fron-tiers in Plant Science, 7, 2049. doi:10.3389/fpls.2016.02049.
Yulia, M., Mansyurdin, & Noli, Z. A. (2022) Ef-fect of bio-stimulant formulation of Cen-tella asiatica (L.) Urb. Crude Terpenoid Extract with Addition of Micronutrients on the Growth and Yield of Upland Rice (Oryza sativa L.). Asian Journal of Biolo-gy, 28–34.